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Abstract

This paper �rst presents a new solution to the fuzzy �rst-order initial value problem. Elementary properties of this new
solution are given. We then compare various derivatives of fuzzy functions that have been presented in the literature followed
by comparing the di�erent solutions one may obtain to the fuzzy initial value problem using these derivatives. Examples are
given, including linear and non-linear fuzzy �rst-order di�erential equations, where we �nd both our new solution and other
solutions to the fuzzy initial value problem. c© 2000 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we will consider the �rst-order ordi-
nary di�erential equation

dy=dt=f(t; y; k); y(0)= c; (1)

where k =(k1; : : : ; kn) is a vector of constants, and t is
in some interval (closed and bounded) I which con-
tains zero. Extensions to y; c; f all vectors is men-
tioned in the last section.
We assume that f satis�es conditions [5, p. 223;

22, p. 24] so that Eq. (1) has an unique solution
y= g(t; k; c), for t ∈ I , k ∈K ⊂Rn, c∈C ⊂R. Let I1,
be an interval for the y-values and set R= I × I1,
a region in R2. Well-known su�cient conditions for
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Eq. (1) to have a unique solution are, given any k ∈K
and c∈C: (1) (0; c) is in R; (2) f is continuous in
R (k is held �xed); and (3) @f=@y is continuous in R.
If these conditions are satis�ed, then there is a unique
solution y= g(t; k; c) for t ∈ I∗. Since zero will belong
to I∗ we will assume that I∗= I . We will also assume
that g is continuous on I × K × C.
The values of the ki and c are uncertain and we

will model this uncertainty by substituting triangular
fuzzy numbers for the ki and c in Eq. (1). We then
wish to solve for y which will now be a fuzzy func-
tion. Our new solution for fuzzy y is the topic of this
paper. Initial results about our new solution were �rst
presented in [1].
The rest of this section presents the basic notation

we will use and then: (1) the second section de�nes
our new solution; (2) the third section compares some
of various derivatives of fuzzy functions that have
been presented in the literature; (3) the fourth section
then compares the various solutions to the fuzzy initial
value problem that one may obtain using the di�erent
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derivatives of Section 3; (4) the �fth section contains
applications to linear and non-linear fuzzy �rst-order
di�erential equations; and (5) the �nal section has a
brief summary and our conclusions.
We place a bar over a capital letter to denote a fuzzy

subset of Rn. So, Y , K , C, etc. all represent fuzzy sub-
sets of Rn for some n. We write A(x), a number in
[0; 1], for the membership function of A evaluated at
x∈Rn. De�ne A6B when A(x)6B(x) for all x. An
�-cut of A, written A[�], is de�ned as {x |A(x)¿ �},
for 0¡�6 1. We separately specify A[0] as the clo-
sure of the union of all the A[�] for 0¡�6 1.
We adopt the general de�nition of a fuzzy number

given in [10]. A triangular fuzzy number N is de�ned
by three numbers a1¡a2¡a3 where the graph of N (x)
is a triangle with base on the interval [a1; a3] and vertex
at x= a2. We specify N as (a1=a2=a3). We will write:
(1) N¿0 if a1¿0; (2) N¿ 0 if a1¿ 0; (3) N¡0
if a3¡0; and (4) N6 0 if a36 0. The �-cut of any
fuzzy number is always a closed and bounded interval.
Let K =(K1; : : : ; Kn) be a vector of triangular fuzzy

numbers and let C be another triangular fuzzy number.
Substitute K for k and C for c in Eq. (1) and we get

dY =dt=f(t; Y ; K); Y (0)=C; (2)

assuming we have adopted some de�nition for the
derivative of the unknown fuzzy function Y (t). We
wish to solve Eq. (2) for Y (t) and have Y (t) a fuzzy
number for each t in I . In general, we use the nota-
tion dY =dt for the derivative of a fuzzy function Y ,
although we have not yet de�ned this derivative. In
Section 3 we will introduce special notation, for var-
ious derivatives of fuzzy functions, which have ap-
peared in the literature.

2. New solution

Our new solution concept is based on our ideas in
solving fuzzy equations [3]. Let K(�)=K1[�]×· · ·×
Kn[�] and �(�)=K(�)×C[�], for 06�6 1. We as-
sume that �(0)⊂K × C so that g will be continuous
on I × �(�) for all �. We �rst fuzzify the crisp so-
lution y= g(t; k; c) to obtain Y (t)= g(t; K; C) using
the extension principle. Alternatively, we get �-cuts
as follows [2, 3]:

Y (t)[�] = [y1(t; �); y2(t; �)]; (3)

with

y1(t; �)=min{g(t; k; c)|k ∈K[�]; c∈C[�]} (4)

and

y2(t; �)=max{g(t; k; c)|k ∈K[�]; c∈C[�]}; (5)

for t ∈ I and �∈ [0; 1]. Still another equivalent pro-
cedure to determine Y (t) is to �rst specify, for
06 �6 1, and t ∈ I

(�)= {g(t; k; c)|(k; c)∈�(�)}; (6)

and then de�ne the membership function of Y (t) as
follows:

Y (t)(x)= sup{� | x∈
(�)}: (7)

Theorem 2.1. 1: Y (t)[�] =
(�) for all �∈ [0; 1];
t ∈ I .
2: Y (t) is a fuzzy number for all t ∈ I .

Proof. 1. Proposition 1 follows from Theorem 2
in [2].
2. The proof that Y (t) is a fuzzy number is similar

to the proof of Theorem 1 in [3] and is omitted.

Assume that yi(t; �) is di�erentiable with respect to
t ∈ I for each � in [0; 1], i=1; 2. We write the partial
of yi(t; �) with respect to t as y′i(t; �), i=1; 2. Let

�(t; �)= [y′1(t; �); y
′
2(t; �)]; (8)

for t ∈ I , �∈ [0; 1]. If �(�) de�nes the �-cuts of a
fuzzy number for each t ∈ I we will say that Y (t) is
di�erentiable and write

dY (t)
dt

[�] =�(t; �)= [y′1(t; �); y
′
2(t; �)]; (9)

for all t ∈ I , �∈ [0; 1]. Notice, that Eq. (9) is just the
derivative (with respect to t) of Eq. (3). So, Eq. (9)
could be written d=dt(Y (t)[�]). Su�cient conditions
for �(t; �) to de�ne the �-cuts of a fuzzy number are
[10, 11]
• y′1(t; �) and y′2(t; �) are continuous on I × [0; 1]; 2
• y′1(t; �) is an increasing function of � for each t ∈ I ;

2 We will assume later (the continuity condition) that y′i (t; �) is
continuous for i=1; 2.
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• y′2(t; �) is a decreasing function of � for each t ∈ I ;
and

• y′1(t; 1)6y′2(t; 1) all t ∈ I .
Now for Y (t) to be a solution to the fuzzy initial value
problem we need that dY (t)=dt exists but also Eq. (2)
must hold. To check Eq. (2) we must �rst compute
f(t; Y ; K). �-cuts of f(t; Y ; K) can be found as fol-
lows:

f(t; Y ; K)[�] = [f1(t; �); f2(t; �)]; (10)

with

f1(t; �) = min{f(t; y; k) |y∈Y (t)[�]; k ∈K[�]};
(11)

f2(t; �) = max{f(t; y; k) |y∈Y (t)[�]; k ∈K[�]};
(12)

for t ∈ I , �∈ [0; 1]. We will say that Y is a solution to
Eq. (2) if dY (t)=dt exists and

y′1(t; �) = f1(t; �); (13)

y′2(t; �) = f2(t; �); (14)

y′1(0; �) = c1(�); (15)

y′2(0; �) = c2(�); (16)

where C[�] = [c1(�); c2(�)]. We show in Section 5
that Y (t) does solve certain fuzzy initial value prob-
lems. But �rst, let us now investigate other methods
of di�erentiating fuzzy functions.

3. Derivatives

Let X (t)= a fuzzy number for each t ∈ I . Also, let
X (t)[�] = [x1(t; �); x2(t; �)] and write x′i(t; �) for the
partial of xi(t; �) with respect to t, i=1; 2. We as-
sume these partials always exist in this section. Now
we will discuss the Goetchel–Voxman derivative, the
Seikkala derivative, the Dubois–Prade derivative, the
Puri–Ralescu derivative, and the Kandel–Friedman–
Ming derivative of X (t). Other authors [4, 16–19, 23]
have also discussed the derivative of a fuzzy function,
however these approaches (except [23] which is simi-
lar to [10]) are more abstract and not directly applica-
ble to solving the fuzzy initial value problem we have

in mind in Section 5. Therefore, we will not discuss
any further in this paper the results presented in [4,
16–19, 23].

3.1. Goetschel–Voxman derivative

The Goetschel–Voxman derivative of X (t), written
GVDX (t), was de�ned in [10] and discussed in [7, 9,
15]. The de�nition of GVDX (t) is given in Appendix
A.We know that [10, Theorem 2.2] ifGVDX (t) exists,
then

GVDX (t)[�] = [x′1(t; �); x
′
2(t; �)]; (17)

for all t ∈ I , �∈ [0; 1]. However, GVDX (t) may not
be a fuzzy number for some t in I and non-standard
fuzzy subtraction (−N is not a fuzzy number when
N is a fuzzy number) is used in the de�nition of the
derivative.

3.2. Seikkala derivative

The Seikkala derivative of X (t), written SDX (t),
was de�ned in [21]. This de�nition was as fol-
lows: if [x′1(t; �); x

′
2(t; �)] are the �-cuts of a fuzzy

number for each t ∈ I , then SDX (t) exists and
SDX (t)[�] = [x′1(t; �); x

′
2(t; �)].

Notice that this is the de�nition of the derivative of
a fuzzy function we used in the previous section. That
is, if dY (t)=dt exists, then SDX (t)= dY (t)=dt. Also,
SDX (t) is a fuzzy number for all t ∈ I .

3.3. Dubois–Prade derivative

The Dubois–Prade derivative of X (t), written
DPDX (t), was de�ned and discussed in [6, 7].
DPDX (t) always exists and its membership function
is given by

DPDX (t)(x)= sup{� | x= x′1(t; �); x= x′2(t; �)}:
(18)

However, DPDX (t) may not be a fuzzy number.
Let us consider the situation where DPDX (t)

can be a fuzzy number for t in I . Assume that
x′1(t; �) and x

′
2(t; �) satisfy the su�cient conditions for
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[x′1(t; �); x
′
2(t; �)] to de�ne �-cuts of a fuzzy number

given in Section 2. We may have to add something
to the de�nition of DPDX (t) to obtain a fuzzy num-
ber. If x′1(t; 1)¡x

′
2(t; 1) for some value of t, then we

separately de�ne DPDX (t)(x)= 1 for all x satisfying
x′1(t; 1)¡x¡x

′
2(t; 1). The DPDX (t) will be a fuzzy

number.

3.4. Puri–Ralescu derivative

The Puri–Ralescu derivative of X (t), written
PRDX (t), was de�ned in [20] and studied in [11–
13]. The de�nition of PRDX (t) is presented in Ap-
pendix A. We know [20, Proposition 3.1] that if
PRDX (t) exists, then

PRDX (t)[�] = [x′1(t; �); x
′
2(t; �)]; (19)

for all t ∈ I , all �∈ [0; 1]. PRDX (t) is always a fuzzy
number for each t ∈ I . However, non-standard fuzzy
subtraction is used in that they employ the Hukuhara
di�erence of fuzzy sets.

3.5. Kandel–Friedman–Ming derivative

The Kandel–Friedman–Ming derivative of X (t),
written KFMDX (t) was de�ned in [8, 14]. We give
the de�nition of KFMDX (t) in Appendix A. We also
have [14, Corollary 1] that when this derivative exists

KFMDX (t)[�] = [x′1(t; �); x
′
2(t; �)]; (20)

for all t ∈ I , all �∈ [0; 1]. This derivative also equals
a fuzzy number for all t ∈ I . Also, non-standard fuzzy
subtraction is used in this paper in their de�nition of
the derivative.

3.6. Relationships

In this subsection we investigate the relationships
between these �ve derivatives.

Theorem 3.1. 1: If GVDX (t) exists and is a fuzzy
number for each t ∈ I; then SDX (t) exists and
GVDX (t)= SDX (t).
2: If PRDX (t) exists; then SDX (t) exists and

PRDX (t)= SDX (t).
3: If KFMDX (t) exists; then so does SDX (t) and

they are equal.

4: If SDX (t) exists and if x′1(t; �) and x
′
2(t; �)

are both continuous in � for each t in I; then
SDX (t)=DPDX (t).

Proof. 1. This follows from Eq. (17) and the de�ni-
tion of SDX (t).
2. This follows from Eq. (19) and the de�nition of

SDX (t).
3. This follows from Eq. (20) and the de�nition of

SDX (t).
4. If SDX (t) exists, SDX (t) is a fuzzy number and

therefore: (1) x′1(t; �) is an increasing function of �
for each t ∈ I ; (2) x′2(t; �) is a decreasing function of
� for each t in I ; and (3) x′1(t; 1)¡x

′
2(t; 1) for all t.

We need to show that for each t, DPDX (t)(x)=
SDX (t)(x). Consider the cases: (1) x¡x′1(t; 0); (2)
x′1(t; 0)6x6x

′
1(t; 1); (3) x′1(t; 1)¡x¡x

′
2(t; 1); (4)

x′2(t; 1)6x6x
′
2(t; 0) and (5) x

′
2(t; 0)¡x. In case (1)

and (5) both memberships are zero. In case (3) both
are one. In case (2) and (4) there is a unique value
of �, say �∗, so that x′1(t; �

∗)= x (x′2(t; �
∗)= x). Then

both equal �∗ because of the continuity assumption.

We will need the following de�nition in the remain-
der of the paper. We will say the continuity condi-
tion holds when x′i(t; �) is continuous on I × [0; 1],
i=1; 2. The continuity condition will hold in all the
applications we are interested in within Section 5. In
the following theorem we only assume the existence
of SDX (t).

Theorem 3.2. Assume the continuity condition
holds. If SDX (t) exists; then SDX (t)=DPDX (t)
=GVDX (t)=PRDX (t)=KFMDX (t).

Proof. Assume SDX (t) exists.
1. Show SDX (t)=GVDX (t). By Theorem 2.3 in [10]
we have GVDX (t) exists and then Eq. (17) holds.
But SDX (t) exists so that Eq. (17) de�nes the �-
cuts of a fuzzy number. Hence,GVDX (t) is a fuzzy
number and Theorem 3.1 says that they are equal.
(SDX (t)=GVDX (t)).

2. SDX (t)=DPDX (t) from Theorem 3.1.
3. We �rst show that KFMDX (t) exists, then by
Theorem 3.1 they are equal. Let

Hi(t; h; �)=
xi(t + h; �)− xi(t; �)

h
− x′i(t; �);

(21)
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for i=1; 2, �∈ [0; 1], t ∈ I and t+h∈ I . From [14]
we need to show

lim
h→0

(∫ 1

0
|Hi(t; h; �)|p d�

)1=p
=0;

i=1; 2 and t ∈ I . Then �-cuts of KFMDX (t) are
given by [x′1(t; �); x

′
2(t; �)]= SDX (t)[�]. We show

the limit for i=1 only. Now x′1(t; �) is uniformly
continuous on I× [0; 1] (I = [0; M ] for an arbitrary
large number M), so given ”¿0 there is a �¿0 so
that 06 |�|¡� implies
|x′1(t + �; �)− x′1(t; �)|¡”
for all �∈ [0; 1], t ∈ I (assume t + �∈ I also). By
the mean value theorem if 0¡|h|¡�
|H1(t; h; �)|= |x′1(t∗; �)− x′1(t; �)|¡”;
where t∗ lies between t and t+ h (|t∗ − t|¡�). So
(
∫ 1
0 |H1(t; h; �)|p d�)1=p¡” if 0¡|h|¡�. Hence,

the limit is zero for i=1.
4. Show SDX (t)=PRDX (t). We show PRDX (t) ex-
ists, then by Theorem 3.1 they are equal. We will
use Theorem 5.1 in [11]. There are two thing to
verify. The �rst is:
4.1. For 06 h¡�, some �¿0

z1(t; h; �) = x1(t + h; �)− x1(t; �); (22)

z2(t; h; �) = x2(t + h; �)− x2(t; �) (23)

are the �-cuts of a fuzzy number, and

w1(t; h; �) = x1(t; �)− x1(t − h; �); (24)

w2(t; h; �) = x2(t; �)− x2(t − h; �) (25)

also are the �-cuts of a fuzzy number. Here
t ∈ I = [0;∞), t + h and t − h∈ I , �∈ [0; 1].
We will show the result for only zi, i=1; 2.
By the mean value theorem

z1(t; h; �)
h

= x′1(t
∗
1 ; �) (26)

for t∗1 ∈ (t; t + h) and
z2(t; h; �)

h
= x′2(t

∗
2 ; �) (27)

for t∗2 ∈ (t; t + h).

But x′1(t; �) is increasing in � and h¿ 0 im-
plies that z1(t; h; �) is increasing in �. Similar,
z2(t; h; �) is decreasing in �. Also z1(t; h; �)
and z2(t; h; �) are continuous. Finally,
z1(t; h; 1)= hx′1(t; 1)6 hx′2(t; 1)= z2(t; h; 1).

4.2. Let I = [0; M ], M¿0. We need to show, for
t ∈ I , ”¿0, there is a �¿0, so that
|Hi(t; h; �)|¡”; (28)

i=1; 2 and if

L(t; h; �)=
xi(t; �)− xi(t − h; �)

h
− x′i(t; �);

(29)

i=1; 2, then also

|L(t; h; �)|¡”; (30)

i=1; 2, for all �∈ [0; 1], if 06 h¡�. But this
follows from part 3 above. This completes the
proof of Theorem 3.2.

Theorem 3.3. Assume the continuity condition
holds. If one of the derivatives SD; GVD and it is a
fuzzy number; PRD; or KFMD exist; then so do the
others and they are all equal.

Proof. Follows from Theorems 3.1 and 3.2.

4. Fuzzy initial value problem

In this section we will look at solutions to the fuzzy
initial value problem (FIVP) (see Eq. (2)) using
SDX (t), RPDX (t) and KFMDX (t). We will not con-
sider GVDX (t) and DPDX (t) since these derivatives
are not necessarily equal to a fuzzy number.

4.1. Buckley–Feuring solution

The Buckley–Feuring solution, written BFS, to
the FIVP, was de�ned in the second section. To
review those results let BFS =Y (t). Then: (1)
Y (t)= g(t; K; C) (Eqs. (3)–(5)); (2) SDY (t) exists
(Eq. (8) de�nes a fuzzy number for all t); and (3)
SDY (t)=f(t; Y (t); K) and Y (0)=C (Eqs. (13)–
(16)). We have the following results regarding
BFS =Y (t).
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Theorem 4.1. Assume SDY (t) exists for t ∈ I . Then
BFS =Y (t) if

@f
@y
¿0;

@g
@c
¿0; (31)

and(
@g
@ki

)(
@f
@ki

)
¿0; (32)

i=1; : : : ; n. If Eq. (31) does not hold or Eq. (32)
does not hold for some i; then Y (t) does not solve the
FIVP.

Proof. Let us assume there is only one ki= k
and that @g=@k¡0 and @f=@k¡0. The proof for
@g=@k¿0 and @f=@k¿0 is similar and omitted.
Since @g=@k¡0 and @g=@c¿0 we have y1(t; �)= g(t;
k2(�); c1(�)), y2(t; �)= g(t; k1(�); c2(�)). Also, be-
cause @f=@y¿0 and @f=@k¡0 we see that f1(t; �)=
f(t; y1(t; �); k2(�)) and f2(t; �)=f(t; y2(t; �); k1(�)).
Now, y= g(t; k; c) is the unique solution to dy=dt=
f(t; y; k) and y(0)= c which implies that

g′(t; k; c)=f(t; g(t; k; c); k); (33)

and

g(0; k; c)= c: (34)

Assuming SDY (t) exists we see that

y′1(t; �) = g
′(t; k2(�); c1(�))

=f(t; g(t; k2(�); c1(�)); k2(�))

=f1(t; �);

and

y1(0; �) = g(0; k2(�); c1(�))

= c1(�);

and also

y′2(t; �) = g
′(t; k1(�); c2(�))

=f(t; g(t; k1(�); c2(�)); k1(�))

=f2(t; �);

and

y1(0; �) = g(0; k1(�); c2(�))

= c2(�);

for all �∈ [0; 1] and t ∈ I . Hence Eqs. (13)–(16) hold.
Now consider the situation where Eq. (31) or (32)

does not hold. Let us only look at one case where
@f=@y¡0 (assume @g=@c¿0, @f=@k¿0, @g=@k¿0).
Then we havef1(t; �)=f(t; y2(t; �); k1(�)),f2(t; �)=
f(t; y1(t; �); k2(�)), y1(t; �)= g(t; k1(�); c1(�)), and
y2(t; �)= g(t; k2(�); c2(�)). Eq. (13) becomes y′1(t; �)
= g′(t; k1(�); c1(�))=f1(t; �)=f(t; g(t; k2(�); c2(�));
k1(�)) which is not true.

4.2. Seikkala solution

The Seikkala solution, written SS, to the FIVP is
X (t) if SDX (t) exists and

SDX (t) =f(t; X (t); K); (35)

X (0) =C: (36)

Going back to the de�nition of SDX (t), Section 3.2,
we see that Eqs. (35) and (36) are equivalent to
Eqs. (13)–(16) substituting xi for yi. That is,

x′1(t; �) = f1(t; �); (37)

x′2(t; �) = f2(t; �); (38)

x1(0; �) = c1(�); (39)

x2(0; �) = c2(�); (40)

where the fi are de�ned as in Eqs. (11) and (12) using
X (t) for Y (t).

4.3. Puri–Ralescu solution

The Puri–Ralescu solution to the FIVP is X (t), writ-
ten PRS =X (t), if PRDX (t) exists and PRDX (t)=
f(t; X (t); K) and X (0)=C. From the results on
PRDX (t) from Section 3 we see that the equations
PRDX (t)=f(t; X (t); K) and X (0)=C are also
equivalent to Eqs. (37)–(40).
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4.4. Kandel–Friedman–Ming solution

The Kandel–Friedman–Ming solution to the FIVP
is X (t), written KFMS =X (t), if KFMDX (t) exists
and KFMDX (t)=f(t; X (t); K) and X (0)=C. From
Section 3.5 we see that these equations are also equiv-
alent to Eqs. (37)–(40).

4.5. Relationships

We are now interested in determining the relation-
ships between BFS; SS; PRS and KFMS.

Theorem 4.2. 1. If BFS = Y (t); then SS =Y (t).
2. If PRS =X (t); then SS =X (t).
3. If KFMS =X (t); then SS =X (t).

Proof. (1) Follows from the de�nition of BFS and
SS.
(2) Follows from Theorem 3.1 and the de�nition of

PRS and SS.
(3) Follows from Theorem 3.1 and the de�nition of

KFMS and SS.

Theorem 4.3. 1. If BFS = Y (t) and PRDY (t) exists;
then PRS = Y (t).
2. If BFS =Y (t) and KFMDY (t) exists; then

KFMS = Y (t).

Proof. 1. If BFS =Y (t); then SS =Y (t) from
Theorem 4.2. If PRDY (t) exists, then PRS is a solu-
tion to Eqs. (37)–(40). But SS is also a solution to
Eqs. (37)–(40). Hence PRS = SS =Y (t).
2. Similar to the proof of 1. above and is omitted.

Theorem 4.4. Assume the continuity condition holds
and I = [0; M ]; some M¿0.
1. If SDX (t) exists; then SS =PRS =KFMS.
2. If BFS =Y (t) and the continuity condition holds
for Y (t); then BFS = SS =PRS =KFMS.

Proof. 1. Assume the x′i(t; �) is continuous, i=1; 2.
Then by Theorem 3.2, SDX (t)=PRDX (t)=KFM
DX (t). Each solution must solve Eqs. (37)–(40).
Hence all solutions are the same.
2. Assume y′i(t; �) are continuous, i=1; 2. If

BFS =Y (t); then by Theorem 4.2, SS =Y (t) and by
part 1, all solutions are equal.

We will say that the derivative condition holds for
the initial value problem when Eqs. (31) and (32) are
true.

Theorem 4.5. 1. If PRS =X (t) and the derivative
condition holds; then BFS =X (t).
2. If SS =X (t) and the derivative condition holds;

then BFS =X (t).
3. If KFMS =X (t) and the derivative condition

holds; then BFS =X (t).

Proof. All proofs are similar, so we will only show
part 1. If PRS =X (t) then PRDX (t) exists and
Eqs. (37)–(40) hold. Assume one ki= k and
@f=@k¿0; @g=@k¿0 (the other cases are similar
and are omitted).

We see

y1(t; �) = g(t; k1(�); c1(�));

y2(t; �) = g(t; k2(�); c2(�));

f1(t; �) = f(t; y1(t; �); k1(�));

f2(t; �) = f(t; y2(t; �); k2(�)):

Also, y= g(t; k; c) is the unique solution to dy=dt=
f(t; y; k); y(0)= c. Now look at Eqs. (37)–(40):

x′1(t; �) = f(t; x1(t; �); k1(�));

x1(0; �) = c1(�);

implies that x1(t; �)= g(t; k1(�); c1(�))=y1(t; �) and

x′2(t; �) =f(t; x2(t; �); k2(�));

x2(0; �) = c2(�);

implies that x2(t; �)= g(t; k2(�); c2(�))=y2(t; �).
Therefore BFS =X (t).

4.6. Discussion

Theorem 4.2 implies that the Seikkala solution is the
most general solution to the fuzzy initial value prob-
lem. Theorems 4.3 and 4.5 relate our new solution to
the other solutions. Theorem 4.4 (since the continuity
condition holds) will have an important application in
the next section because it indicates that we should
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�rst search for the BFS and then, assuming that the
BFS solution does not exist, look for the SS.

5. Applications

Throughout this section the continuity condition
will hold and we will assume that I = [0; M ]; for some
M¿0; so Theorem 4.4 will dictate our strategy for
solving the FIVP. The strategy is: (1) �nd Y (t) and
check to see if BFS =Y (t) because if this is true all
solutions equal Y (t); (2) if SDY (t) does not exist or
Y (t) does not solve the FIVP, �nd SS (if it exists) be-
cause if SS =X (t); then all the other solutions (PRS;
KFMS) will be equal to X (t).

5.1. Growth=decay model

Consider the initial value problem dy=dt=f(t; y; k)
= ky with y(0)= c. We know that y= g(t; k; c)=
c exp(k t). Checking the derivative condition
(Theorem 4.1) we have Y (t) (assuming SDY (t)
exists) solve the FIVP if @f=@y= k¿0 since then
@g=@k¿0; @g=@c¿0 and @f=@k =y¿0 for all t. So,
if k¡0; we look for a SS.

Example 1. Assume k¿0. Let K =(k1=k2=k3); a tri-
angular fuzzy number with k1¿0; and C =(c1=c2=c3)
also with c1¿0 (c is usually positive in a growth prob-
lem). Also set K[�] = [k1(�); k2(�)]; C[�] = [c1(�);
c2(�)]. Then we easily see that �-cuts of Y (t) are

y1(t; �) = c1(�) exp(k1(�)t); (41)

y2(t; �) = c2(�) exp(k2(�)t): (42)

Therefore, Eq. (8) becomes

�(t; �) = [c1(�)k1(�) exp(k1(�)t);

c2(�)k2(�) exp(k2(�)t)]; (43)

which is easily seen to be the �-cuts of a fuzzy number
SDY (t) for all t ∈ I . Next we see that Y (t) solves the
FIVP. We compute

f1(t; �) = c1(�)k1(�) exp(k1(�)t); (44)

f2(t; �) = c2(�)k2(�) exp(k2(�)t); (45)

so that Eqs. (13) and (14) hold. Obviously, Y (0)=C
and therefore BFS =Y (t).
We notice that yi(t; 0)→∞; for i=1; 2; (y2(t; 0)−

y1(t; 0))→∞; and y1(t; 1)=y2(t; 1)→∞ as t→∞.
Hence, the support of Y (t) grows larger and larger,
and the place where Y (t)(x)= 1 gets larger and larger,
as t grows.

Example 2. Assume k¡0. K and C are triangular
fuzzy numbers as in Example 1 with k3¡0. We need
to solve the following system (Eqs. (37)–(40)) using
ki(�)¡0:

x′1(t; �) = k1(�)x2(t; �); (46)

x′2(t; �) = k2(�)x1(t; �); (47)

x1(0; �) = c1(�); (48)

x2(0; �) = c2(�) (49)

for x1(t; �) and x2(t; �). In Eqs. (46) and (47) we have
assumed a positive solution for X (t); or x1(t; �)¿0. If
the intervals [x1(t; �); x2(t; �)] de�ne �-cuts of a fuzzy
number X (t); then SS =X (t). The systemmay, or may
not, have a Seikkala solution.
The general solution to Eqs. (46)–(49) is

x1(t; �) = A11(�) exp(!t) + A12(�) exp(−!t); (50)

x2(t; �) = A21(�) exp(!t)− A22(�) exp(−!t); (51)

where !=
√
k1(�)k2(�); �=

√
k1(�)=k2(�); A11(�)=

0:5(c1(�) + �c2(�)); A12(�)= 0:5(c1(�) − �c2(�));
A21(�)= 0:5(c1(�)=�+c2(�)) and A22(�)= 0:5(c1(�)=
� − c2(�)). We need to check if [x1(t; �); x2(t; �)] de-
�nes the �-cuts of a fuzzy number X (t) for all t ∈ I .
But this is not true since for large t x1(t; �)≈A11(�)
exp(!t); x2(t; �)≈A21(�) exp(!t) andA11(�)¿A21(�)
for all �. So, in general SS does not exist for large
values of t. SS exists for 06t6
 for some 
¿0.

5.2. General linear �rst order

Here we consider dy=dt=−k1y + k2; y(0)= c
so that y= g(t; k; c)= k2=k1 + (c − k2=k1) exp(−k1t).
Now f(t; y; k1; k2)=−k1y + k2. It can make a dif-
ference whether we look at dy=dt + k1y= k2 or
dy=dt=−k1y + k2 but �rst we will concentrate on
the form dy=dt=f(t; y; k1; k2)=−k1y + k2. The
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derivative condition (Theorem 4.1) says we need
@f=@k¿0; or k1¡0 for a BFS. So assume that k1¡0.
Next, we easily see that @f=@k2¿0; @g=@c¿0; and
@g=@k2¿0 (since k1¡0). Also, @f=@k1 =−y is nega-
tive since y¿0 and if k2¿0 we �nd that @g=@k1¡0.
So we assume that k1¡0; k2¿0 and BFS will exist
as long as SDY (t) exists. If k1¿0; we would look for
Seikkala solution.

Example 3. Let K1 = (k11=k12=k13) with k13¡0; K2 =
(k21=k22=k23) and k21¿0; and C =(c1=c2=c3); c1¿0.
Also set Ki[�] = [ki1(�); ki2(�)]; i=1; 2. Then �-cuts
of Y (t) are

y1(t; �)=
k21(�)
k12(�)

+
(
c1(�)+

k21(�)
k12(�)

)
exp(−k12(�)t);

(52)

y2(t; �)=
k22(�)
k11(�)

+
(
c2(�)+

k22(�)
k11(�)

)
exp(−k11(�)t);

(53)

since @g=@k1¡0; @g=@k2¿0 and @g=@c¿0. Now, we
may see that

y′1(t; �)= (k21(�)−k12(�)c1(�))exp(−k12(�)t); (54)
y′2(t; �)= (k22(�)−k11(�)c2(�))exp(−k11(�)t); (55)
de�nes �-cuts of a fuzzy number SDY (t) because
k ′21(�)¿0; k

′
12(�)¡0; c

′
1(�)¿0; k

′
22(�)¡0; k

′
11(�)¿0

and c′2(�)¡0 where the prime denotes the derivative
on �. Hence it follows that Y (t)=BFS.
We again see that yi(t; 0)→∞; (y2(t; 0) −

y1(t; 0))→∞; and y1(t; 1)=y2(t; 1)→∞ as t→∞.
So, as t grows both the support of Y (t) and the
position where Y (t)(x)= 1 get larger and larger.

Example 4. Now assume that k1¿0 and letK1 = (k11=
k12=k13) with k11¿0. We need to solve (K2¿0)
(C¿0)

x′1(t; �)=−k12(�)x2(t; �) + k21(�); (56)

x′2(t; �)=−k11(�)x1(t; �) + k12(�); (57)

x′1(0; �)= c1(�); (58)

x′2(0; �)= c2(�); (59)

and see if [x1(t; �); x2(t; �)] de�nes �-cuts of fuzzy
number X (t).

The solution is

x1(t; �) = A11(�)exp(!t) + A12(�)exp(−!t) + �1;
(60)

x2(t; �) = A21(�)exp(!t) + A22(�)exp(−!t) + �2;
(61)

where !=
√
k11(�)k12(�), �1 = k22(�)=k11(�); �2 =

k21(�)=k12(�) and A11(�)= [(c1−�1)�−(c2−�2)]=2�,
A12(�)= [(c2−�2)+�(c1−�1)]=2�, A21(�)=−�A11
(�), A22(�)=− �A12(�) where �=

√
k11(�)=k12(�).

Do Eqs. (60) and (61) de�ne the �-cuts of a fuzzy
number for t in I? We would like to show for each
t in I that: (1) x1(t; �) is an increasing function of
�; (2) x2(t; �) is a decreasing function of �; and (3)
x1(t; 1)6x2(t; 1). But we have been unable to do this.
What we have been able to do is to randomly generate
two million values of K1¿0; K2¿0; and C¿0 and
then check to see if Eqs. (60) and (61) do de�ne the
�-cuts of a fuzzy number for values of t in I . In all
cases the answer was yes. So, it looks like the Seikkala
solution exists in this case.
Assume that Eqs. (60) and (61) do de�ne a

fuzzy number which we will call X (t). We will
now investigate what happens to X (t) as t grows
larger and larger. So, we will assume M is a very
large positive number so that t ∈ I = [0; M ] can be-
come a large positive number. Let c1(1)= c2(1)= c;
k11(1)= k12(1)= k1 and k21(1)= k22(1)= k2. At
�=1 we have �1 = �2 = k2=k1 = �; �=1; and != k1.
We see that x1(t; 1)= x2(t; 1)= �+(c− �) exp(−k1t)
so as t grows we get x1(t; 1)= x2(t; 1)≈ �. Next, we
argue that x1(t; �)→−∞; x2(t; �)→∞ as t→∞; for
�¡1. First, we see that x1(t; �)≈A11(�)exp(!t)+�1;
and x2(t; �)≈A21(�)exp(!t) + �2 as t gets larger
and larger. It is easy to check that A11(�)¡0 and
A21(�)¿0 for �¡1. Since exp(!t)→∞ as t→∞ the
results follows. This implies that X (t) ≈ 1 for large t
where 1(x)= 1 for all x. That is, the uncertainty in the
solution grows in time until it is completely uncertain.

Example 5. This example shows that if we change
the initial value problem slightly, the BFS can ex-
ist for k1¿0. Consider the following mixing prob-
lem. The tank initially contains 300 gals of brine
which has dissolved in it c lbs of salt. Coming into
the tank at 3 gals=min is brine with concentration
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Fig. 1. Mixing problem.

k2 lbs salt=gals and the well stirred mixture leaves at
the rate 3 gals=min. See Fig. 1. Let y(t)= lbs of salt
in the tank at any time t¿0. Then

dy
dt
+

1
100

y=3k2; y(0)= c: (62)

The solution is

y= g(t; k2; c)= 300k2 + (c − 300k2)exp
(
− 1
100

t
)
:

(63)

Notice that we wrote the initial value problem dif-
ferently, we did not write dy=dt=f(t; y; k2) because
then there will be no BFS.
We next fuzzify g to get Y (t). Assume K2¿0 and

C¿0. Since @g=@k2¿0; @g=@c¿0 we obtain the �-
cuts of Y (t)

y1(t; �) = 300k21(�)

+ (c1(�)− 300k21(�))exp(−0:01t); (64)

y2(t; �) = 300k22(�)

+ (c2(�)− 300k22(�))exp(−0:01t): (65)

Then we compute SDY (t); whose �-cuts are

y′1(t; �) = (3k21(�)− 0:01c1(�))exp(−0:01t); (66)

y′2(t; �) = (3k22(�)− 0:01c2(�))exp(−0:01t); (67)

which de�nes a fuzzy number if 3k ′21 − 0:01c′1¿0;
3k ′22 − 0:01c′2¡0. Let K2 = (k21=k22=k23); C =(c1=c2=
c3). Then k ′21 = k22 − k21; c′1 = c2 − c1; k ′22 = k22 − k23
and c′2 = c2 − c3. Let us then assume that 3(k22 −
k21)¿0:01(c2 − c1) and 3(k23 − k22)¿0:01(c3 − c2)
so that SDY (t) exists. Now we check to see if
SDY (t) + 0:01Y (t)= 3K2. Obviously, this is true so
that BFS =Y (t). Notice that Y (t)→ 300K2 as t→∞.
Notice that SDY (t) does not equal −0:01Y (t) +

3K2(t). Hence solutions to the fuzzy initial value prob-
lem are sensitive to how it is written down. If you
change how the fuzzy initial value problem is pre-
sented it may, or may not, have a BFS or a SS. This
of course is a result of fuzzy arithmetic in that −N
reverses a fuzzy number N .

5.3. First-order non-linear

Consider the initial value problem

dy
dt
= k1y2 + k2; y(0)= 0; (68)

where ki¿0 for i=1; 2. The solution is

y= g(t; k1; k2; c)= � tan(!t); (69)

on I = [0; �) with �= �=(2!) where !=
√
k1k2 and

�=
√
k2=k1. Now consider the corresponding fuzzy

initial value problem with Ki¿0 for i=1; 2. We cal-
culate Y (t) using @g=@k1¿0 and @g=@k2¿0

y1(t; �) = �1(�) tan(!1(�)t); (70)

y2(t; �) = �2(�) tan(!2(�)t); (71)

with �1(�)=
√
k21(�)=k11(�); �2(�)=

√
k22(�)=k12(�);

!1(�)=
√
k11(�)k21(�) and !2(�)=

√
k12(�)k22(�).

Then �-cuts of SDX (t) are

y′1(t; �) = k21(�) sec
2(!1(�)t); (72)

y′2(t; �) = k22(�) sec
2(!2(�)t); (73)

which de�nes a fuzzy number. Then one may easily
check that SDX (t)=K1Y 2(t)+K2; so BFS exists for
this non-linear fuzzy initial value problem.
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Actually, once we knew that SDX (t) existed we
could have used Theorem 4.1 to conclude BFS
existed because @f=@y¿0 and (@f=@ki)(@g=@ki)¿0
for i=1; 2. If k1¡0; then BFS does not exist for this
problem.

6. Summary and conclusions

This paper is concerned with methods of solving the
fuzzy initial value problem given in Eq. (2). We �rst
developed our new solution Y (t). Basically, Y (t) is the
fuzzi�cation of the crisp solution to the initial value
problem in Eq. (1). We gave necessary and su�cient
conditions for Y (t) to solve the fuzzy initial value
problem.
We also investigated various methods, which have

been presented in the literature, of di�erentiating
fuzzy functions and we developed relationships be-
tween these derivatives. Using these methods of
di�erentiating fuzzy functions, after discarding those
which do not always produce fuzzy numbers for the
derivative, we investigated the types of solutions they
can produce to the fuzzy initial value problem. We
then presented relationships between these solutions
and our new solution Y (t).
Examples are given including a non-linear fuzzy

initial value problem and the general linear fuzzy
initial value problem. Assuming a certain continuity
condition holds (give in Section 3.6) the solution
strategy was: (1) �rst see if our new solution solves
the fuzzy initial value problem because if it does,
then all solutions will equal our new solution; (2) if
our new solution does not solve the problem, �nd the
Seikkala solution (de�ned in Section 4.2) because if
it exists, then all the other solutions will equal the
Seikkala solution. That is, under the continuity, there
are only two types of solutions. We also showed that
if our new solution does not exist, then you might
be able to rewrite the di�erential equation in another
form, and then our new solution will exist.
Extensions to other fuzzy problems is too di�cult.

For example we can apply our new solution concept
to fuzzy partial di�erential equations. We �rst �nd
the crisp solution, fuzzify it and then check to see if
it satis�es the fuzzy partial di�erential equation. This
will be a topic for future research.

Appendix A

In this Appendix we present the de�nitions of
GVDX (t); PRDX (t) and KFMDX (t).

A.1. Goetschel–Voxman derivative

We �rst must give the metric used for this deriva-
tive. Let X (t) and Z(t) be two fuzzy functions
for t ∈ I . Both X (t) and Z(t) are fuzzy numbers
for each t in I . Set X (t)[�] = [x1(t; �); x2(t; �)] and
Z(t)[�] = [z1(t; �); z2(t; �)] for all t and �. Then the
metric D is

D(X (t); Z(t)) = sup
�
{max[|x1(t; �)− z1(t; �)|;

|x2(t; �)− z2(t; �)|]}; (A.1)

for all t in I .
The derivative of X (t) at t0 de�ned as

GVDX (t0)= lim
h→0

(
X (t0 + h)− X (t0)

h

)
; (A.2)

provided the limit exists with respect to the metric D.
However, the subtraction in Eq. (A.2) is not standard
fuzzy subtraction because

[X (t0 + h)− X (t0)][�]
= [x1(t0+h; �)−x1(t0; �); x2(t0+h; �)−x2(t0; �)];

(A.3)

for all t; �. Standard fuzzy arithmetic would produce

[x1(t0 + h; �)− x2(t0; �); x2(t0 + h; �)− x1(t0; �)]:
(A.4)

A.2. Puri–Ralescu derivative

Again, we �rst specify the metric used for this
derivative. X (t) and Z(t) are as in the previous section
and the metric D is now

D(X (t); Z(t))= sup
�
H (X (t)[�]; Z(t)[�]); (A.5)

for all t;whereH is the Hausdor� metric on non-empty
compact subsets of R.
Next, we need to de�ne the Hukuhara di�erence

between two fuzzy numbers A and B. If there exists a
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fuzzy number C so that C+A=B; then C is called the
Hukuhara di�erence between B and A and we write
this as

B
∗− A=C: (A.6)

X (t) is di�erentiable at t0 in I if there exists fuzzy
number PRDX (t0) so that

lim
h→0+

(
X (t0 + h)

∗− X (t0)
h

)
=PRDX (t0); (A.7)

and

lim
h→0+

(
X (t0)

∗− X (t0 − h)
h

)
=PRDX (t0): (A.8)

Both limits are taken with respect to the metric D in
Eq. (A.5).

A.3. Kandel–Friedman–Ming derivative

First, fuzzy numbers now do not need to have com-
pact support. The metric D used is

Dp(X (t); Z(t))

= max



[∫ 1

0
|x1(t; �)− z1(t; �)|p d�

]1=p
;

[∫ 1

0
|x2(t; �)− z2(t; �)|p d�

]1=p
; (A.9)

for x1(t; �); x2(t; �); z1(t; �) and z2(t; �) all in Lp[0; 1];
for all t in I .
X (t) is di�erentiable at t0 ∈ I if there is a fuzzy

number KFMDX (t0) so that

lim
h→0

Dp

[
X (t0 + h)− X (t0)

h
; KFMDX (t0)

]
=0:

(A.10)

However, the subtraction X (t0 + h)− X (t0) in the
above equation is not standard fuzzy subtraction since
it is de�ned as in Eq. (A.3).
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