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I. INTRODUCTION 

The elaboration of a stability theory of fuzzy systems is fully justified by 
the use, in a variety of practical situations, of fuzzy controllers [ 11, 27, 28). 
However, such a theory may be founded upon ideas that arise from a 
historical study of dynamical systems theory. 

During the last quarter of the nineteenth century, the study of ordinary 
differential equations underwent some rather radical changes. Prior to this 
period, the major emphasis in the subject had been on the methods of solving 
equations. It was during this period that Peano [20] gave a rigorous proof of 
the existence theorem for solutions of ordinary differential equations. During 
the same period, Lipschitz [ 151 and Picard [22] showed that the method of 
successive approximations led to a proof of the existence and the uniqueness 
of solutions to the initial value problem. These developments represent the 
dhuement of the attempts to solve differential equations. 

As the works of Peano, Lipschitz and Picard were finishing one chapter in 
the book of differential equations, another was being initiated with the 
research of Liapunov [ 141 and Poincare [23]. This new chapter was based 
on an entirely different approach, where one did not attempt to compute the 
solutions; rather one tried to exploit their topological properties. 

Poincart, in his famous m&moire [23], was the first to look at an ordinary 
differential equation from the point of view of the geometry of the trajec- 
tories, thereby creating the topological theory of ordinary differential 
equations. Almost at the same time, the stability theory created by Liapunov 
[ 141 although heavily quantitative in its methods, stressed the importance of 
some topological features of ordinary differential equations. During the 50 
years following Liapunov and Poincare, many important advances were 
made. It is with the works of Birkhoff [4], Nemytskii and Stepanov [ 191, 
and Smale [26] that researchers realized that the essence of this theory was 
based on the notion of dynamical system. 

Based on Liapunov’s original works, “classical” stability theory is 
concerned with the equilibrium points of the system and the dynamical 
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behavior of this system in a neighborhood of these points. However, a 
feature that characterises these stability notions is that they pertain to one 
specific model of the system under consideration. Important as such an 
approach is in engineering. its utility in systems arising in biology, 
economics and social sciences must be viewed with some scepticism. The 
basic problem is that systems of this kind almost always operate far from 
equilibrium and are subject to perturbations that change the equilibrium 
points. Moreover, even if a system has a fixed structure, due to the uncer- 
tainty attached with its mathematical model. it is impossible to determine its 
structure with exactitude. 

Based upon Poincare’s pioneering works, the “modern” stability coun- 
terpart to the equilibrium-centered classical view is the concept of a struc- 
turally stable system [ 16, 2 11, i.e., of a system whose behavior is not 
drastically altered by a slight change in its structure. 

These two aspects of the stability problem are of equal importance. They 
play complementary roles in the analysis of a dynamical system. Thus. it is 
desirable to combine them, i.e., to perform an analysis of the behavior of a 
family of trajectories generated by all models near to the nominal model. 
Since, in addition, some models represent the system with greater fidelity 
than others, this problem is clearly related to the concept of fuzzy system. 

Based on our theory of fuzzy systems introduced in [8], this paper may be 
viewed as an attempt to solve this problem. 

Having defined. in Section 2, the fuzzy derivative of a real-valued function, 
we discuss, in Section 3, the problem of invariance for a fuzzy system. To 
start with, we define the concept of limit set Q(U) of a fuzzy system. Then, 
we establish the topological properties of Q(u). Finally, we propose an 
Invariance Principle for fuzzy systems. which generalizes the celebrated 
LaSalle’s Invariance Principle [ 131. In Section 4, we investigate the problems 
relative to the stability of a fuzzy system. On the one hand, the concept of CI- 
stability is introduced, removing the binary distinction between stability and 
instability. On the other hand, in order to allow the trajectories to have 
different behaviors, two types of a-stability are considered. Based on the 
inspection of the sign of the fuzzy derivative of a real-valued function I’, 
criteria of a-stability are derived both for V continuous and V lower- 
semicontinuous. These results, while integrating some aspects of Poincare’s 
ideas, generalizes what is known as Liapunov stability theory [ 13. 141. 

Throughout this paper, the following notations have been used. 
A fuzzy subset [3 1 ] A of a carrier set X is defined by its membership 

function P,~: X+ I = [0, l] c R. The family of all fuzzy subsets of X is 
denoted by P(X). 

The a-cut of a fuzzy subset A of X is, for a E I - (01, the set 

A, = (x E X:pu,(x) > a}. 
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Let X be a Banach space. The dynamical behavior of a continuous-time 
fuzz47 system, whose state at time t is denoted by x(t) E P(X), is governed by 
the differential equation 

where R is a fuzzy relation over X (i.e., a fuzzy subset of X’). 
Defining the mapping 

u I-+ R,(u) = (w E x: (u, w) E R,} 

and assuming, if d denotes the metric in X, that, for all a E I - (O}, 

(i) R,(u) is compact and nonempty, 
(ii) R,(.) is Lipschitz-continuous, i.e., that there exists a real k such 

that, for all u,, u2, d[R,(u,), R,(u,)] < k. d(u,, uJ, we can show that a 
fuzzy system is governed by the equation 

which possesses a unique solution. In other words, if x0 denotes the initial 
state, there exists, for all a, a mapping f,: P(X) + P(X) such that 

and a mapping f: P(X) -+ P(X) such that 

f(XO, t) = x(l). 

This equation is the evolution equation of a fuzzy system. 
Henceforth, for the sake of simplicity, we will denote the initial state by x 

and the state at time t byf(x, t). 
We can show that 

0) f,(fA4 tA f2) =L(u, b + t2). 
(ii) (24, t) bf,(u, t) is continuous. 
(iii) f,(u, t) is compact, for all u E X and all t E R + . 

A mapping 4,(u, .): t H $,(u, t) such that 

(i) $&, t2> CL,P,(u, t,), f2 - tll, 
(ii) 4,(u, .) is Lipschitz-continuous, 

is called an a-trajectory through U. The family of a-trajectories is denoted by 
@ a. 
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An a-trajectory generates a tangent vector field on X and is a solution to 
the differential relation 

o’*(u, t) E R,[o,(u. t)I a.e. I E F+. 

The theory of fuzzy systems, developed in 181 and sketched above. 
generalizes, in addition to the theory of dynamical systems 12, 3,9], systems 
subject to changes in their structure and/or in the initial conditions [23], 
general control systems (3,241. systems with nonunique solutions [2 I. 
systems defined over a nonassociative time space [I 1. 

For all subset M of X and all E > 0. we define 

B(M, E) = (x E x: d(x. M) < E}, 

B[M.&]= (XEX:d(x,M)<&}. 

S(M, E) = (x E x: d(x, M) = E}. 

Cl denotes the closure, while P denotes the boundary. 

2. FUZZY DERIVATIVE OF A REAL-VALUED FUNCTION 

2.1. The most important tool to investigate the question of 
invariance and stability for a fuzzy system is provided by the determination 
and the study of a real-valued function and the inspection of the sign of its 
fuzzy derivative. 

Let V: X ---) R be a real-valued function of the state-space X. First assume 
that V is continuous. Given a fuzzy system defined by its flowf, consider the 
fuzzy subset DV(u) of X. defined, for all u E X, by 

DW) = pII+ t-y V(f(u, t)) - V(u)]. 

where the operations in P(X) are made by using the extension principle [32]. 
The fuzzy set DV(u) is called the fuzzy derivative of V along the fuzzy 
system f. 

Since V is continuous andf,(u, t) is compact (and consequently P,.,~.~, is 
upper-semicontinuous), the o-cut DVa(u) of DV(u) may be written 

D, V(u)=,'~ra,t-'[~(~~(~.f),- V(u)]. 

Since, in addition. for all z Ef,(u, I), there exists an a-trajectory q, such 
that $,(u, t) = L, D, V(U) is defined by 
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i.e., 

Thus, D, V(U) is the family of right-hand-side derivatives of V along the u- 
trajectories through U, at the origin. 

2.2. We now wish to extend this definition to the case where 
V: X+ R fails to be continuous and is only lower-semicontinuous. 

Although it is not immediately obvious, there are some significant 
advantages to the dropping of the continuity assumption. One can, for 
example, choose V as a function of the metric d. 

Consider the fuzzy subset DV(u) of X defined by 

DV(u) = lizmf t-‘]V(f(u, t)) - V(U)]. 

Proceeding as above, we can show that 

D, V(U) = 
I 
limgnf W,(u9 t)) - Vu) : # E @ 

t n ++ 

i.e., that D, V(U) is the set of lower right-hand-side Dini derivatives of V 
along the a-trajectories through U. at the origin. 

We note that if V happens to be continuous, the two definitions of DV(u) 
coincide. 

For both V continuous and V lower-semicontinuous, the (lower) right- 
hand-side derivative of V along an a-trajectory 4, through u will be denoted 
by f(#,, U) so that 

3. INVARIANCE PRINCIPLE 

3.1. A problem of prime importance is the study of the asymptotic 
behavior of a fuzzy system, i.e., of the existence and the location of a fuzzy 
region S of the state-space thatf(u, t) approaches as t + co. There may even 
exist a smallest and nonempty fuzzy subset S that also has this property and, 
if so, one would like to locate it. In this sense, locating such a fuzzy set S is 
the best asymptotic information one can hope to obtain. In discussing 
questions of this type, the concept of limit set of a fuzzy system, which 
generalizes that of limit set of a system due to Birkhoff [4], is quite useful. 
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DEFINITION 3.1. The limir set O(u) of a fuzzy system is the fuzzy set 

defined by the property: A c O(U) if there exist a sequence (r,}. t,, --t cc as 

II + 03, and a sequence (A,}, P(X) 3.4, cf(u. I,,), such that ,D~,, +,u., as 
n + 00. The a-cut O,(u) of Q(u) is called the a-limir set. 

The a-limit set L’,(u) of a fuzzy system is then defined by: z E O,(U) if 

there exist a sequence ( fn}, t, + co as n + co, and a sequence (z,}, 

z, Ef,(u, t), such that z, + z as n + co. 
Moreover, since, for all z, Ef,(u. t,), there exists an a-trajectory 9: 

through u such that $z(u, t,) = z,, the definition of the a-limit set can be 

rephrased: z E n,(u) if there exist a sequence it,}, tn + 03 as n + co, and a 

sequence (#z(u, I,,)) such that #Z(U, t,) + z. However, this reformulation does 

not provide a description of the a-limit set of a fuzzy system in terms of the 

asymptotic behavior of the a-trajectories. 

THEOREM 3.1. The a-limit set Q,(u) of a fuzzy system is given by the 
property: z E Q,(u) if there exist a sequence (t,}, t, + co as n + 00, and an 
a-trajectory 4, through u such that @,(u, t,,) + z as n + CO. 

Proof. Let z E Q,(U) and let (I,,} and {z,,} be the corresponding 
sequences. Then, for all E > 0, there exists N such that, for all n > N, 
d(z,, z) < 5’2. Hence, for all n > N, 

d(z,,z,+,)<d(z,,z)+d(z,+,,z)=&. 

Therefore, there exists an a-trajectory 4: through zN such that for all n > N, 

$C(z,, t, - fN) = z,. Thus, there exist an a-trajectory 4, through u and a 

sequence It,,,}, t, --t 00 as m -+ co, such that #=(u, t,) + z. I 

We can give this algebraic definition of the a-limit set an equivalent 
geometric version. 

THEOREM 3.2. Let O(u) be the limit set of a fuzzy system. Then 

flab)= n Cl u f&h 0 
TER, 1>T 

ProoJ: Denote by 52: and f2: the a-limit set given by the definition and 

the theorem, respectively. Several cases have to be considered. 

(i) Suppose that Q:(U) = 0 and G:(u) # 0. Then, for all z E Q:(u), 

z 65 n Cl u f&T t). 
reR+ I>T 
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Hence, there exists E- such that 

i.e., such that 

Therefore, for any sequence ( tn} such that t, > EF and t, + 03 as n + co, one 
cannot find a sequence {zn} such that z, Ef,(u, t,) and z, -+ z. Hence, 
Q:(u) # 0, which is a contradiction. Thus, a:(u) = 0 implies Q:(u) = 0. 

such (i$t Suppose that Q:(U) = 0 and n:(u) # 0. Then, there exists z E X 

z E n Cl u f&4 t). reR+ tar 
Hence, for all integers k, 

i.e., there exist a sequence (tn} such that t, > k and a sequence (z,} such that 
z, Ef,(u, t,) and z, - z. If k-+ a, t,, -+ co and then z E n:(u). This a 
contradiction. Thus, L!:(u) = 0 implies Q:(u) = 0. 

(iii) One can assume that G:(u) and Q:(u) are nonempty. Consider 
z E R:(u). Then, there exist (tn}, t, + co as n + cc, and {z,,}, z, Ef,(u, t,), 
such that z, -+ z. Suppose that z E Q:(u), i.e., that 

zg n CI u f,ht). 7ElR+ tar 
Then, there exists d such that 

z @ u f,(u, 6. I>6 
Proceeding as in (i), one can show that the supposition leads to a 
contradiction. Thus, z E n:(u) and R:(u) c n:(u). 

Conversely, consider z E n:(u). Then, for all integers k, we have 

z E Cl u f&4 t). t>k 
Therefore, proceeding as in (ii), one can show that z E Q:(u). Thus, n:(u) c 
Q:(u). I 
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Combining Theorems 3.1 and 3.2 yields the geometric definition of OR,,(rt) 
in terms of the u-trajectories: 

Q,(u) = n Cl u u Q,(U, l). TE,>* r2r O,EO,, 
THEOREM 3.3. The u-limit set R,(u) of a fuzz?* sIxtern is closed. 

Proof: Consider a sequence (zm}, z, E R,(u), such that d(z,. z) < ljm 
for some z E X. To each z,. there corresponds a sequence (L~,.~} such that 

+ 03 
:;zm.. 3 

as n + co and a sequence (z~.,} such that z,., ~f,(u, t,,,l) and 
zm) < l/n. Therefore, 

d(z,,,, 2) < d(z,,,,. z,)+d(z,,z)<2/n+O as II+co. 

Thus, z E Q,(U). I 

3.2. As alluded to in previous sections, one of the main aspects in 
the study of the asymptotic behavior of a fuzzy system is the question of 
invariance. 

DEFINITION 3.2. A subset M of X is said to be u-invariant for a fuzzy 
system f if, for all u E M and for all I E R + , f,(u, t) n M f 0, 

Remark 3.1. (i) If M, and M, are a-invariant, so is M, u M 2’ 
(ii) The fact that M is u-invariant does not guarantee that, for all 

u E M, f,(u, t) does not leave M for all t E R + . However, M is a-invariant if 
and only if, for all u E X, there exists an o-trajectory $, such that 
b,(u. t) E M, for all t E IF? + . 

THEOREM 3.4. The u-limit set R,(u) of a fuzzy system is a-invariant. 

Proo$ Let z E Q,(u) and let (f,} and (zn} be the sequences such that 
f,, + co as n--$ co, z, E f,(u, I,) and z, + z. For all n, there exists an u- 
trajectory $z such that zn = @z(u, fn). Let q, be the mapping defined by 

@&:(u, f,), .): t w @:(u, f, + I). 

Then, @, is an o-trajectory through @Z(U, fn). However, 

#a(#a(u, In), 0) = $,(u, tn) + z as n + 0~). 

Therefore, for all r E ip I. 

Hence, there exist a sequence (t:}, rl, = t, + 7 + co as n + co, and a sequence 
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(#z(u, r;)} such that $t(u, t;) -+ $,(z, r). Thus, we have #a(z, r) E Q,(u) and 
f,(z, t) n Q,(u) # 0, for all 5 E R + . I 

Define the mapping 6: P(X) x P(X) + R + by 

6(/l, B) = sup(d(u, B): u E B }. 

We note that 6 is not a metric since &I. B) = 0 if and only if A c B. 
However, 

d(A, B) = max[&4, B), 6(B, A)]. 

We note that if Mc X is such that S[f,(u, I), M] -+ 0 as t-, co, then 
L’,(u) c Cl M. Therefore, if Q,(u) is not empty and 6[f,(u, t), B,(u)] + 0 as 
t-, co, Q,(u) is the smallest set having this property; and one would like to 
locate it. Unfortunately, it is not necessarily true that 6[f,(u, t), a,(u)] + 0 
as f 4 co. In fact, OR,(u) may be empty. This desirable property holds under 
one additional assumption. 

DEFINITION 3.3. Given a fuzzy systemf, the fuzzy set 

Y(U) = u fb f) fElF;+ 
is called the hull. Its u-cut 

is called the a-hufl. 

THEOREM 3.5. Let y(u) and Q(u) be the hull and the limit set of a fizz] 
system. If fhere exists a loM)er-semicontinuous function V: X+ R + such that 

(i) V(z)+ co as llzll-+ co, 

(ii) sup D, V(z) < 0, for all z E X - n,(u), 

then, II,(U) is bounded. 

Proof. Suppose that IT,(U) is not bounded. Then there exist an (x- 
trajectory 4, and a sequence {fn}, f,, + 03 as n --) co such that 
lIti,(u, f,,)ll + co as tz + co. Hence, if u, = @,(u, I,,), we have V(u,) + 03 as 
:n+c0. Therefore, vi(tia, u,) > 0 and sup D, V(u) > 0, which is a 
contradiction. m 

THEOREM 3.6. If the a-hull y,(u) of a fuzzy system f is bounded, then 
the a-limit set R,(u) is nonempty and compact. Moreover, 
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~[f,(u, I)? Q,(u)1 + 0 as t+ 00 and Q,(u) is the smallest set having this 
property. 

Proof: (i) As X is complete and y,(u) is bounded. Cl y,(u) is compact. 
As n,(u) is closed (Theorem 3.4) and contained in Cl y,(u), n,(u) is 
compact. 

(ii) Given any sequence (fn}, t, + 00 as n --t 00 and any sequence 
(zn}, z, ~f,(u, t,), y,(u) bounded and (zn} c y,(u) imply the existence of a 
subsequence (tm} c (fn} such that (zm} is Cauchy. Hence, by completeness 
of X, (z,) converges to z E Q,(u). It follows that n,(u) is not empty. 

(iii) Suppose that 6[f,(u, t),Q,(u)] + 0 as t + co. Then, there exist 
E > 0 and a function g: R + -+X such that g(t) Ef,(u, t), for all t E R + , and 
dk(t)v Q,(u)1 > E. Hence, for all sequence (t, }, tn + 03 as n -+ co, 
4&n), fl,@)l > E as n + 00. Boundedness of Y’(U) implies the existence of 
a subsequence {t,} of (tn} such that (g(t,)} is Cauchy with t,+ 03 as 
m+c0 and d[g(t,), n,(u)] + 0 as m + 00. This contradicts the 
supposition. I 

3.3. Theorems 3.5 and 3.6 provide an effective way of investigating 
the asymptotic behavior of a fuzzy system. They show that the existence of a 
real-valued function V satisfying conditions of Theorem 3.5 guarantees the 
existence of a nonempty compact and a-invariant subset of X, namely, the a- 
limit set n,(u), such that 

d[f,(u, t), II,(u)] -+ 0 as t + co. 

Hence, we now desire some method of locating n,(u). Such a method is 
provided by the generalization to fuzzy systems of the LaSalle’s Invariance 
Principle [ 131. 

THEOREM 3.7 (Invariance Principle). Let f be a fuzzy system and let V 
be a lower-semicontinuous function X -+ R + such that 

(i) V is defined in N c X, 

(ii) V(u) > -o3,for all u E Cl N, 

(iii) sup D, V(u) < -W(u), for all u E Cl N, where W is a lower- 
semicontinuous function Cl N + R + . 

If Q,(u) c Cl N, then n,(u) c M, where M is the largest a-invariant subset 
of {z E Cl N: W(z) = O}. ZA in addition, y,(u) is bounded, then 
6[f,(u, t), M] -+ 0 as t + 0~). 

Proof. Assuming that y,(u) c Cl N, we have Q,(u) c y,(u) c Cl N. If 
y,(u) is not bounded, Q,(u) may be empty, in which case the theorem is 
obviously true but vacuous. Hence, we will assume that Q,(u) # 0. 
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Let u E Cl N. Since sup D, V(U) < W(U), then, for any a-trajectory @,, 

Hence, V is nonincreasing along any a-trajectory. 
Since I/ is lower-semicontinuous and 4, is continuous, by a standard 

result of integration theory, it follows that V(+,(u, a)): R + + R is differen- 
tiable a.e. on compact subsets of R + and that 

v(#,(k t)) - V(U) < 1.’ F($a(u. r)) dr a.e. fER+. 
-0 

Hence, for any sequence (t,, }, t, + co as n + 00, for any sequence ($n(~, t,) } 
such that $,(u, tn) -+ z E Q,(u) and for a.e. t E R + 

f (4 ( p a ~7 r + t,)) dr > W,(u, tn + 0) - v(@,(u, I,)). -0 

Defining for all u-trajectory 9, the real 

yields V(#,(u, t)) + [ as t -+ co, where V(s) > -co. The lower-semicontinuity 
of V implies that [ > -a~. The uniqueness of the limit [ shows that 

(-r f(@,(u,r+t,))dt+O as n-r m. 
-0 

Let z E O,(u) and {$A(& t,)} be the sequence such that #A(u, t,) -+ z as 
n + co. Then for all 4, E Qa, 

W($&, 5)) = W$,( iil #A@, t,)), 5). 

As W is lower-semicontinuous, we have 

where $:(u. I, + r) = g,($L(u. r,), ) r IS an a-trajectory through @A(u, t,). 
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As Ct’ is non-negative and lower-semicontinuous, we have. by applying 
Fatou’s lemma. 

< lim inf )-I W($i(u, t, + T)) dr 
n-,x .#J 

u,fn+r))dr=O a.e. TV R,. 

Therefore, W(q,(z, r)) = 0 a.e. r E [O, t]. The lower-semicontinuity of W 
implies W(z) = 0. Thus, for all z E 0,(u), W(z) = 0, i.e., 

B,(u)c (zEX: W(z)=O}. I 

We note that, since V(qa(u, r)) -+ c as t + co, then, if V is continuous, 
V(z) = [, for all z E Q,(u). Therefore, if V is continuous, Q,(u) is included 
in the largest a-invariant subset of (z E X: p(z) = 0). 

4. STABILITY 

4.1. Throughout this section, M denotes a closed subset of X. First 
recall, for the sake of completeness, the definition of positive-definiteness of a 
real-valued function [ 191. 

DEFINITION 4.1. A function V: X+ P is said to be positiw-definite with 
respect to a closed subset M of X if and only if: 

(i) V is defined in a neighborhood N of M. 

(ii) V(U) = 0. for all r4 E M. 

(iii) For all E > 0, there exists S = S(E) such that V(u) < E whenever 
d(u, M) < 6. 

(iv) There exists a function <: IF + + E’, strictly increasing, continuous 
and such that r(O) = 0 and <(d(u, M)) < V(u). for all u E N-M. 

We note that, since M is closed, N - M is never empty. Hence, there exists 
r] > 0 such that 
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Therefore, if V is a positive-definite function with respect to M and if K(a), 
a E R + , denotes the set 

K(a) = {u E N: V(u) < a}, 

it is always possible to find a = inf( V(U): u E S(M, q)} such that K(a) c N. 

DEFINITION 4.2. A subset M of X is said to be stable for a fuzzy system 
f if for all E > 0, there exists 6 = d(e) such that u E B(M, S) implies 
f(u, t) c B(M, E), for all t E R + . 

According to this definition, M is stable if and only if y(u) c B(M, E) 
whenever u E B(M, 6). However, as seen in the previous sections, y,(u) may 
be bounded for a > 6 and unbounded for a < 6, for some 8. Hence, it may 
happen that y,(u) c B(M, E), for a > 6i and y,(u) & B(M, E) for a < & Thus, 
this definition is too large and suggests the removal of the clear distinction 
between stability and instability, i.e., the introduction of degrees of stability. 

DEFINITION 4.3. A subset M of X is said to be a-stable for a fuzzy 
system f if for all E > 0, there exists 6 = d(e) such that u E B(M, 6) implies 
f,(u, t) c B(M, E), for all t E R + . 

DEFINITION 4.4. A subset M of X is an a-attractor if there exists a 
neighborhood N of M such that, for all u E N, for all sequence (t,,}. tn + co 
as II + 03, and all sequence {z,}, z, Ef,(u, t,), then z, + z E M as n + co. 

These two definitions can be rephrased: 

(i) A subset M of X is a-stable if and only if, for all E > 0. there 
exists 6 = B(E) such that u E B(M, E) implies ,u~(,.~,(z) < a, for all 
iEB(M,E), for all tE R,. 

(ii) A subset M of X is an a-attractor if and only if there exists a 
neighborhood N of M such that, for all u E N, for all sequence (tn}, t, + co 
as n--t co, and all sequence (zn} such that ,L~~~,,~~(z,,) > a, then z, + z E M as 
n+ al. 

DEFINITION 4.5. A subset M of X which is a-stable and is an a-attractor 
is said to be u-asymptotical~v stable. 

We note that if M is (asymptotically) a-stable, then M is (asymptotically) 
p-stable, for all /I > a. 

Criteria of a-stability for a fuzzy system can be established by exploiting 
our concept of fuzzy derivative of a real-valued function. 
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THEOREM 4.1. Let f be a fuzzy system and let M be a subset oj’ .X. rJ 
there exists a lower-semicontinuous function V: X+ IF such that 

(i) V is defined in a neighborhood N oJ’M, 

(ii) V is positive-definite with respect to M, 

(iii) sup D, V(u) < O.for all u E N. 

then M is a-stable. 

Proof. Let u E N. As long asf,(u, t) c N, sup D, V(u) < 0. Therefore, as 
long asf,(u, t) c N, V(z) < V(u), for all z Ef,(u. t). 

Let 9 = inf(d(z, M): z E aN}. Then, for all q such that 0 < f7 < 6, 
K(q) c Cl N and K(q) n %N = 0. Let u E K(q). Suppose there exists t such 
that f,(u, t) G? K(q). Then, there exists r and z Ef,(u. t) such that V(z) > n, 
which is a contradiction. Hence, for all u E K(q), f,(u, t) c K(q). Thus, for 
all u E K(q) and all z Ef,(u, t), V(z) < V(u). 

V being positive-definite, for all E > 0, there exists 6 > 0 such that 
d(u, M) < 6 implies V(u) < E. Then, for all E > 0, there exists 6 > 0 such that 
d(u, M) < 6 implies V(z) < E, for all z Ef,(u, I). 

Moreover, according to Definition 4.1, for all 1 there exists E > 0 such that 
d(u, M) > A implies V(u) > E = <(A). Therefore, V(u) < E implies d(u, M) < A. 

Thus, for all E > 0, there exists 6 > 0 such that d(u, M) < 6 implies 
d(z, M) < E. for all z Ef,(u, t), i.e., such that u E B(M, 6) implies f,(u. t) c 
WI, c). I 

THEOREM 4.2. Let f be a fuzzy system and let M be a subset of X. If 
there exists a lower-semicontinuous function V: X-1 W such that 

(i) V is defined in a neighborhood N of M, 

(ii) V is positive-dejkite with respect to M, 

(iii) sup D, V(u) < 0, for all u E N-M, 

then M is asymptotically a-stable. 

Proof It suffices to show that M is an a-attractor. To suppose that M is 
not an a-attractor implies that there exist a sequence {t,}. t, + co as n + CO 
and a sequence (zn}, z, E f,(u, t,), such that z, + z E M. Then, z E Q,(u). 
Applying the Invariance Principle shows that sup D, V(z) = 0, which is a 
contradiction. I 

Combining Theorem 4.2 and Theorem 3.7 (Invariance Principle) shows 
that if M is asymptotically a-stable then, for all u E N, Q,(u) c M. 

Theorems 4.1 and 4.2 suppose the a priori knowledge of the evolution 
equation and even of the a-trajectories. Since it is rarely the case, it is of 
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prime importance to be able to reformulate these a-stability criteria in such a 
way that the explicit knowledge of the evolution equation is not required. 

THEOREM 4.3. Let a ~UZZJJ system be defined bJl a fuzzy relation R and 
let M be a subset of X. If there exists a C’-jIunction V: X-t IR such that 

(i) V is dejked in a neighborhood N of M. 
(ii) V is posititle-deJnite with respect to M, 
(iii) sup((VV, zj: z E R,(u)} < 0 (resp. <O), for alf u E N - M, 

then M is a-stable (resp. asymptotically a-stable). 

Prooj For all u E N-M, any a-trajectory 4, through u is a solution to 
the differential relation 

d,(u, t) E R,[#,(u, t)] a.e. t E R + . 

Hence, (iii) implies, for all u E N - M, 

PK 4,@4 t)lt=o+) < 0. 

Let @l(u) be the set of everywhere differentiable a-trajectories through u. 
Then, for all 9, E @t and for all u E N - M, there exists a continuous 
function h such that h(u) E R,(u) and Ja(u, t) = h(@,(u, t)). Hence 

0 > PK AA4 t)l,,o+) = $ W,(u, t))] [ 
3 

I=0 

and thus, for all 4, E @t, VQa, U) ( 0. 
Let 4, be an a-trajectory through u such that 4, 6Z @“,, i.e., such that #, is 

not differentiable at t E (r,, r2 ,... }. Then there exist 4; E @z, i = 1, 2 ,..., such 
that 

4,(“3 t, = #k(“, t)3 ri- 1 < t < ri, 

where r. = 0. Hence, for all 4, E @, - @f, 

Thus, sup D, V(u) < 0, for all u E N. Applying Theorems 4.1 and 4.2 
completes the proof. 1 

The a-stability criterion provided by Theorem 4.3 is essentially based 
upon the relationship which connects VV with the derivatives of V along the 
a-trajectories. However, this result requires the continuous differentiability of 

409!99 )2~2 
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the function V. As already mentioned, this assumption is restrictive and then 
suggests a more general version of this theorem. 

THEOREM 4.4. Let a fkzy system be defined by a fuzzy relation R and 
let M be a subset of X. If there exists a lower-semicontinuous function 
V: X+ IR such that 

(i) V is defined in a neighborhood N of M, 

(ii) V is positive-definite with respect to M, 

(iii) there exists a continuous function W: X+ IR such that 

V(u + ti) - V(u) 
t 

< -W(u) 

(resp. < -W(u)), for all u E N - M, 

then M is u-stable (resp. asymptotically a-stable). 

ProoJ For all u E N, any a-trajectory 9, through u is a solution to the 
differential relation 

i,(u, t) E R,[g&. t)] a.e. t E R + . 

Let @i be the set of everywhere differentiable a-trajectories. Then, for all 
4, E @t and for all u E N, there exists a continuous function h such that 
h(u) E R,(u) and 4, = h(#,). Hence, (iii) implies 

lim inf V(u + to - V(u) < _ w(u) 
\ . 

t-0, t 

S-h(u) 

for all u E N. 
Hence, applying [29] yields 

v($,(u, t)> - v(u) < -1’ @‘(@a@, 5)) dr 
-0 

and, consequently, 

lim inf V(4,(4 t)) - V(u) < -+yu) 

I-rO, t 

Thus, for all 4, E @z, v(@, , u) < -W(u). 
Proceeding as in Theorem 4.3, we can show that, for all @, E @, , 

p(@,, U) < -W(U). Thus, sup D, V(u) < -W(u). Applying Theorems 4.1 and 
4.2 completes the proof. .m 
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4.2. The notion of a-stability given by Definition 4.2 implies that 
for a fuzzy system to be a-stable, all the a-trajectories must have roughly the 
same behavior (at least in a neighborhood of a subset M of X). The 
approach developed in Section 3 shows that it may not be the case. This 
suggests a less restrictive definition of the concept of a-stability which takes 
into account the possibly different behavior of the a-trajectories. 

DEFINITION 4.6. A subset M of X is said to be partially a-stable for a 
fuzzy system f if, for all E > 0, there exists 6 = B(E) such that u E B(M, 6) 
implies f,(u, t) n B(M, c) # 0, for all t E R + . 

This definition can be rephrased: a subset M of X is partially a-stable if 
and only if, for all E > 0, there exists 6 = 8(e) such that if u E B(M, 6) then 
there exists z E B(M, E) such that ,~r(~,~,(z) > a, for all t E R + . 

We note, that unlike a-stability, if M is partially a-stable, then M is 
partially P-stable for any /I < a. 

THEOREM 4.5. Let f be a fuzzy system and let M be a subset of X. If 
there exists a lower-semicontinuous function V: X-r IR such that 

(i) V is defined in a neighborhood N of M, 

(ii) V is positive-definite with respect to M, 

(iii) inf D, V(u) < 0. for all u E N, 

then M is partially a-stable. 

Proof Since, for all u E N, inf D, V(u) < 0, proceeding as in 
Theorem 4.1, we can show that there exists an a-trajectory @, E @, such 
that V(o,(u, t)) < V(u), for all t E R + . 

The positive-definiteness of V implies that, for all E > 0, there exists 6 > 0 
such that V(u) < E whenever d(u, M) < 6. Therefore, for all E > 0, there 
exists 6 such that d(u, M) < S implies V(o,(u, t)) < E, for all t E R + . 

Moreover, for all 1, there exists E > 0 such that (see Definition 4.1) 
d(u, M) > 1 implies V(u) > E = &I), i.e., such that d(u, M) < 1 whenever 
V(u) < E. 

Thus, for all E > 0, there exists 6 > 0 such that d(u, M) < 6 implies 
d($,(u, th W < e, for all tER+. Hence, u E B(M, 6) implies 
$,(u. t) E B(M, F), i.e., f,(u, t) n B(M, E) # 0, for all t E R + . 1 

Theorem 4.3 provides an a-stability criterion which does not require the 
explicit knowledge of the evolution equation of the fuzzy system. We can 
establish a similar result for partial a-stability. 

THEOREM 4.6. Let a fuzzy g’stem be defined by a fuzzI relation R and 
let M be a subset of X. If there exists a C’-function V: X+ iR such that 
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(i) V is defined in a neighborhood 3’ of 11. 
(ii) V is positice-definite with respect to M. 

(iii) inf( (TV, z:)l: 2 E R,(u)} < 0. for all u E N, 

then M is partially u-stable. 

THEOREM 4.7. Let a fuzzy system be defined bly a fuzzy relation R and 
let M be a subset of X. If there exists a lower-semicontinuous function 
V: X+ IR such that 

(i) V is deJned in a neighborhood N of M, 
(ii) V is positive-dejmite with respect to M, 

(iii) there e-xists a continuous function W: X -+ IFC + such that 

for all u E N, then M is partial!v a-stable. 

4.3. The concepts of a-stability and of partial a-stability of a subset 
M of X are of particular interest when M is reduced to an equilibrium point. 

DEFINITION 4.7. A point u, of X is said to be an a-equilibrium point of a 
fuzzy system f if 24, E f,(u,, t) for all t E R + . 

Clearly, iff is induced by a fuzzy relation R, u, is an a-equilibrium point 
if and only if 0 E R,(u,). 

The following theorems contain several characterizations of an a- 
equilibrium point. 

THEOREM 4.8. A point u, of X is an a-equilibrium point of a fuzzy 
system f tf and only if there exists a sequence {t,,}, t, -+ 0 as n --) co, such that 
u, E f,(u,, tn) for all n. 

Proof: The necessity is obvious. For sufficiency, if t = kt,, for some 
integer k, then it follows from induction that f,(u,, kt,) = 
f,(f,(u,. (k - 1) t,), t,) 3 u,. Otherwise, there exists an integer k, such 
k,t, < t < (k, + 1) t, and hence an integer m such that k,t, < k,t, < t < 
(k, + 1) t, < (k, + 1) t,. Therefore, k, t, -+ t as n -+ 00. The mapping f,(u, .) 
being continuous d[f,(u,, k,t,),f,(u,, t)] + 0 as n + co. Thus U, Ef,(u,, t). 
Since t is arbitrary, U, is an a-equilibrium point. 1 

THEOREM 4.9. If u is not an a-equilibrium point of a fuzzy1 system f, then 
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there exist neighborhoods N, of u and N, of f,(u, t) such that N, n N, = 0 
andf,(N,, t) = N,. 

Proof. Let t be fixed but arbitrary. Let A and B be two disjoint open 
subsets of X containing u andf,(u, t), respectively. Then 

The mapping z E-V da(z, t) being one-to-one and continuous, $,(A, t) is open. 
Hence,f,(A, t) is open. Define 

N, =f,(A, t) n B. 

Then N, is an open neighborhood of f,(u, t) since both f,(A, t) and B 
containf,(u, t) and are open. Define now 

N, = (z E X: @,(z, t) E N2 t/$, E @,}. 

Then 

N, = (-) (z E X: qda(z, t) E N2} 
~,E@o 

and hence f,(N,, t) = N,. We note that N, is not necessarily open but its 
interior contains U. Since finally A includes N,, N, n N2 = 0. a 

THEOREM 4.10. The set of a-equilibrium points of a fuzzy system f is 
closed. 

Proof: If the set of a-equilibrium points is not closed, then there exists a 
sequence (u,} of u-equilibrium points such that u, + u and u is not an a- 
equilibrium point. Hence, applying Theorem 4.9, there exist two 
neighborhoods N, of u and N2 of f,(u, t) such that N, nNz = 0 and 
f,(u. I) = N2. Since u, -+ u. for suffkiently large n, u, E N,. Then, we have 
f,(u,, t) c Nz and hence f,(u,, t) n N, = 0. Thus u, &f,(u,, t) which is a 
contradiction. I 

THEOREM 4.11. A point u, of X is an u-equilibrium point of a fuzz} 
system f if and only if ecey neighborhood of u, contains the orbit of an a- 
trajectory. 

Proof: The necessity is obvious. For sufficiency, suppose that u, is not 
an a-equilibrium point. Then there exist two neighborhoods N, of u, and Nz 
of f,(u,, t) such that N, n N, = 0 and f,(N,, t) = N2. Since N, contains the 
orbit of an a-trajectory 4, through u,, then $a(z, t) E Nz for all z E N,. Thus 
N, n N2 # 0, which is a contradiction. 1 
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THEOREM 4.12. Let f be a fuzz), sjlstem. If there e.uists an ct-trajector:\, 
d, such that d[g,(u. t). u, ] -+ 0 as t + co, then u, is an u-equilibrium point. 

Proof: Let N be a neighborhood of u,. Since we have d[p,(u, t), U, 1 + 0 
as t+ 03, there exists F such that Q,(u. t) c N for all t > %. Let 
z = d,(u, a). Then N contains the orbit of o,(z. t). Applying Theorem 4.1 I 
completes the proof. 1 

Criteria of (partial) a-stability of an cc-equilibrium point can be derived in 
a straightforward manner. 

THEOREM 4.13. Let u, be an u-equilibrium point of a fuzz.v system 
dejined by the fuzzy relation R. Let V and W be functions defined as in 
Theorem 4.4. If for all u in a neighborhood of u, 

SUP iliminf v(“+ri)-v(u):zER.,(u)( <-W(u) 
t+0+ t 
3-r 

(resp. < -W(u)), then u, is u-stable (resp. asynptotically u-stable). 

THEOREM 4.14. Let u, be an a-equilibrium point of a fuzzy system 
dejined by a fuzzy relation R. Let V and W be functions defined as in 
Theorem 4.1. If for all u in a neighborhood of u, 

,im inf vu + ti) - V(u) 

t-o+ t 
:zER,(u)( <-W(u), 

then u, is partially a-stable. 
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