Федеральное агентство по образованию

ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Материалы к первой аттестации

Учебное пособие для вузов

Утверждено научно-методическим советом математического факультета, протокол №3 от 23.11.2006 г.

Составители: Леженина И.Ф., Петрова Л.П., Прядко И.Н., Садовский Б.Н. Рецензент: Смагина Т.И.

Пособие подготовлено на кафедре функционального анализа и операторных уравнений математического факультета Воронежского государственного университета.

Рекомендуется для студентов математического факультета. Для специальности 010101 (010100) – Математика и направления 010200 (511200) – Математика. Прикладная математика

1. Уравнения с разделяющимися переменными

Пример: xydx + (1+x)dy = 0.

Решение:

Перенесём первое слагаемое в правую часть равенства (1+x)dy = -xydx и разделим обе части равенства на (1+x)y: $\frac{dy}{y} = -\frac{xdx}{1+x}$. Перейдя к интегральному уравнению $\int \frac{dy}{y} = -\int \frac{xdx}{1+x}$, получим общее решение $\ln |y| = -x + \ln |1+x| + C$, или в более простой записи $\frac{y}{1+x} = Ce^{-x}$, $C \neq 0$. Решив алгебраическое уравнение (1+x)y = 0, находим частные решения x = -1 и y = 0. Второе из них y = 0 входит в общее при C = 0. Поэтому в результате решение уравнения можно записать в виде общего решения $y = C(1+x)e^{-x}$ и одного частного x = -1.

Найти решения следующих уравнений:

1.
$$x\sqrt{1+y^2} + yy'\sqrt{1+x^2} = 0$$
;

5.
$$(x^2-1)y'+2xy^2=0$$
, $y(0)=1$;

2.
$$(y^2 + xy^2)y' + x^2 - yx^2 = 0$$
;

6.
$$y' = 3\sqrt[3]{y^2}$$
, $y(2) = 0$;

3.
$$e^{y}(1+x^{2})dy-2x(1+e^{y})dx=0$$
;

7.
$$2x^2yy' + y^2 = 2$$
;

$$4.(1+y^2)(e^{2x}dx-e^ydy)-(1+y)dy=0;$$

$$8. \sqrt{4 + y^2} dx - y dy = x^2 y dy.$$

2. Уравнения y' = f(ax + by + c), приводящиеся к уравнениям с разделяющимися переменными заменой z = ax + by + c

Пример: $(x+y)^2 y' = 4$.

Решение:

В этом примере выражение ax+by+c=x+y, поэтому, введя замену z=x+y, y'=z'-1, получаем $z^2\left(z'-1\right)=4$ или $z'=\frac{z^2+4}{z^2}$. Разделив переменные и интегрируя полученное уравнение $\int \frac{z^2}{z^2+4} dz = \int dx$, получим общее ре-

шение
$$z-2\arctan\frac{z}{2}=x+c$$
, или с первоначальной переменной $y-2\arctan\frac{x+y}{2}=C$.

Найти решения следующих уравнений:

1.
$$y' = \cos(x - y - 2)$$
;

5.
$$(x+2y)y'=1$$
; $y(0)=-1$;

2.
$$y' = (2x + y)^2 + 2$$
;

6.
$$y' = \sqrt{4x + 2y - 1}$$
;

3.
$$y'+1=\frac{1}{\ln(x+y)}$$
;

7.
$$y' = (4x + y - 3)^2$$
;

4.
$$y' - y = 2x - 3$$
;

$$8. y' = \operatorname{tg}(y - 2x).$$

3. Однородные уравнения

Пример:
$$xy' = y + \sqrt{x^2 - y^2}$$
.

Проверка:

Сначала проверим, является ли данное уравнение однородным, заменив в нём x на kx и y на $ky-(kx)y'=(ky)+\sqrt{(kx)^2-(ky)^2}$. Нетрудно видеть, что при делении обеих частей равенства на k получается исходное уравнение.

Решение:

Поскольку уравнение однородно, то замена y=tx, y'=t'x+t должна привести его к уравнению с разделяющимися переменными: $x(t'x+t)=tx+\sqrt{x^2-t^2x^2}$. Приведя подобные и разделив обе части равенства на x, получаем уравнение с разделяющимися переменными $t'x=\sqrt{1-t^2}$. Поделив его части на $x\sqrt{1-t^2}$ и проинтегрировав их $\int \frac{dt}{\sqrt{1-t^2}} = \int \frac{dx}{x}$, получаем общее решение arcsin $t=\ln|x|+C$, а из уравнения $x\sqrt{1-t^2}=0$ — частные решения $t=\pm 1$. Возвращаясь к исходной переменной y, окончательно выписываем решение

$$\arcsin \frac{y}{x} = \ln |x| + C, \quad y = x, \quad y = -x.$$

Найти решения следующих уравнений:

$$1. \left(x - y\cos\frac{y}{x}\right)dx + x\cos\frac{y}{x}dy = 0;$$

$$4. \left(x+2y\right)dx + xdy = 0;$$

5.
$$2x^3y' = y(2x^2 - y^2);$$

2.
$$x^2y' = xy + y^2e^{-\frac{x}{y}}$$
;

6.
$$xy' - y = x \operatorname{tg} \frac{y}{x}$$
;

3.
$$2xy'(x^2 + y^2) = y(y^2 + 2x^2);$$

7.
$$xy' - y = (x + y) \ln \frac{x + y}{x}$$
;

8.
$$xy' = \frac{3y^3 + 6yx^2}{2y^2 + 3x^2}$$
.

4. Уравнения $y' = f\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)$, приводящиеся к однородным перенесе-

нием начала координат в точку пересечения прямых

Пример: (x+y+2)dx+(x-y+4)dy=0.

Решение:

Найдём точку (-3;1) пересечения прямых $\begin{cases} x+y+2=0 \\ x-y+4=0 \end{cases}$ и введём замену $x=x_1-3,\ y=y_1+1,\$ для которой $dx_1=dx,\ dy_1=dy$ $(x_1=x+3,\ y_1=y-1).$ Получаем однородное уравнение $(x_1+y_1)dx_1+(x_1-y_1)dy_1=0,\$ для которого замена $y_1=tx_1,\ dy_1=x_1dt+tdx_1$ приводит к уравнению с разделяющимися уравнениями $(x_1+tx_1)dx_1+(x_1-tx_1)(x_1dt+tdx_1)=0,\$ или $x_1(t-1)dt=(1+2t-t^2)dx_1.$ Разделим на $x_1(1+2t-t^2)$ и проинтегрируем обе части равенства : $\int \frac{1-t}{t^2-2t-1}dt=\int \frac{dx_1}{x_1},\ \int \frac{1-t}{(t-1)^2-2}dt=\ln|x_1|+C,\ -\frac{1}{2}\int \frac{dt(t-1)^2}{(t-1)^2-2}dt=\ln|x_1|+C.$ Наконец, получаем общее решение $-\frac{1}{2}\ln|t^2-2t-1|=\ln|x_1|+C.$ Избавляемся от логарифмов: $x_1\sqrt{|t^2-2t-1|}=C,\ C\neq 0.$ Из равенства $x_1(1+2t-t^2)=0$ находим частные реше-

ния $x_1 = 0$, $t = 1 \pm \sqrt{2}$, входящие в общий ответ при C = 0.

Возвращаясь к исходным переменным, получим

$$(y-1)^2 - 2(x+3)(y-1) - (x+3)^2 = C$$
, или $y^2 - x^2 - 2xy - 4x - 8y = C$.

Найти решения следующих уравнений:

1.
$$(2x+y+5)y'=3x+6$$
;

2.
$$(x+y)dx + (y-x+2)dy = 0$$
;

3.
$$y' = 2\left(\frac{y+2}{x+y-1}\right)^2$$
;

4.
$$y' = \frac{4y-8}{3x+2y-7}$$
;

5.
$$y' = \frac{x+8y-9}{10x-y-9}$$
;

6.
$$y' = \frac{x - 2y + 3}{-2x - 2}$$
;

7.
$$y' = \frac{5y+5}{4x+3y-1}$$
;

8.
$$y' = \frac{x+4y-5}{6x-y-5}$$
.

5. Линейные уравнения первого порядка

Уравнению y' = a(x)y + b(x) соответствует общее решение

$$y = e^{\int a(x)dx} \left(\int_{0}^{a(x)dx} b(x) e^{-\int a(x)dx} dx + C \right)$$
. Ноль под знаком интеграла означает, что бе-

рется одна (любая) из первообразных.

Пример: $y' + 2xy = 2xe^{-x^2}$

Решение:

Выразив из уравнения y', определяем a(x) = -2x, $b(x) = 2xe^{-x^2}$, которые подставляем в общий вид решения $y = e^{-x^2} \left(\int_0^2 2xe^{-x^2}e^{x^2}dx + C \right) = e^{-x^2} \left(x^2 + C \right)$, и находим общее решение $y = e^{-x^2} \left(x^2 + C \right)$.

Найти решения следующих уравнений:

1.
$$y' + y \cos x + \sin x \cos x = 0$$
;

2.
$$(x+1)dy - (2y + (x+1)^4)dx = 0$$
;

3.
$$y = x(y' - x\cos x)$$
;

4.
$$xy' - 2y = 2x^4$$
;

5.
$$(2x+1)y' = 4x + 2y$$
;

6.
$$y' + y \operatorname{tg} x = \sec x$$
;

$$7. \left(xy + e^x\right) dx - xdy = 0;$$

8.
$$y'(x\sin y + 2\sin 2y) = 1$$
;

$$9. \left(xy + e^y\right) dy - y dx = 0;$$

10.
$$y^2 dx + (xy + 1) dy = 0$$
;

11.
$$2y(y^2 + x)dy = dx$$
;

$$12. \left(x + y^2\right) dy = y dx;$$

13.
$$(2x+y)dy = ydx + 4\ln ydy;$$

14.
$$y' = \frac{y}{3x - y^2}$$
;

15.
$$(1-2xy)y' = y(y-1)$$
.

6. Уравнения Бернулли

Общий вид: $y'=a(x)y+b(x)y^{\alpha}$, $\alpha\in\mathbf{R}$. Решается делением на y^{α} с последующей заменой $z=y^{1-\alpha}$.

Пример:
$$y' = \frac{3x^2}{x^3 + y + 1}$$

Решение: Данное уравнение является уравнением Бернулли относительно переменной x: $x' = \frac{1}{3}x + \frac{y+1}{3}x^{-2}$. (Степень n = -2 меньше нуля, поэтому функция x = 0 не является решением уравнения). Замена $z = x^{1-n} = x^3$ приводит

его к линейному уравнению: $3x^2x' = x^3 + y + 1$, z' = z + y + 1. Вычисляем решение:

$$z = e^{\int_0^{dy}} \left(\int_0^{-\int_0^{dy}} (y+1) e^{\int_0^{-\int_0^{dy}}} dy + C \right) = e^y \left(C - e^{-y} \left(y+2 \right) \right) = C e^y - y - 2.$$
 Возвращаемся к переменной x : $\underline{x^3 = C e^y - y - 2}$.

Найти решения следующих уравнений:

1.
$$xy' + y = y^2 \ln x$$
;
2. $3y^2y' - 2y^3 = x + 1$;
3. $(x+1)(yy'-1) = y^2$;
6. $y'\left(\frac{x}{2} - \frac{2y}{x}\right) = 1$;
7. $dx + \left(2x - x^2e^y\right)dy = 0$;

4.
$$(1-x^2)y' - 2xy^2 = xy$$
;
5. $2x^2 + y' - 2xy^2 = xy$;
8. $1 = \frac{3y^2}{y^3 + x + 1}y'$.

$5. 2y^2 dy = (xy + x^3) dy;$

7. Уравнения в полных дифференциалах

Пример:
$$\frac{1 - \ln xy}{x^2} dx + \left(\frac{1}{xy} + \cos y\right) dy = 0.$$

Проверка:

Сначала проверим, является ли данное уравнение уравнением в полных дифференциалах, вычислив и сравнив частные производные множителей при дифференциалах.

ренциалах переменных:
$$\left(\frac{1 - \ln xy}{x^2} \right)'_y = \left(\frac{1}{xy} + \cos y \right)'_x = -\frac{1}{x^2 y}.$$

Решение:

Проинтегрировав второе слагаемое левой части уравнения, найдём функцию F(x, y), дифференциал которой совпадает с правой частью:

$$F(x, y) = \frac{1}{x} \ln y + \sin y + C(x)$$
. Неизвестную функцию $C(x)$ найдём из равенст-

ва F_x множителю при dx исходного уравнения

$$F_x' = -\frac{1}{x^2} \ln y + C'(x) = \frac{1}{x^2} - \frac{1}{x^2} \ln x - \frac{1}{x^2} \ln y , \text{ откуда } C'(x) = \frac{1}{x^2} - \frac{1}{x^2} \ln x \text{ и}$$

$$C(x) = \frac{\ln x}{x}. \quad \text{Решение уравнения записывается в виде} \quad \frac{1}{x} \ln xy + \sin y = C.$$

Найти решения следующих уравнений:

1.
$$\left(x + \frac{y}{x^2 + y^2}\right) dx + \left(y - \frac{x}{x^2 + y^2}\right) dy = 0;$$

2.
$$\left(\frac{x}{\sqrt{x^2 + y^2}} + y\right) dx + \left(\frac{y}{\sqrt{x^2 + y^2}} + x\right) dy = 0$$

3.
$$y + xy' + \frac{1+y'}{x+y} = 0$$
;

4.
$$2xydx + (x^2 - y^2)dy = 0$$
;

5.
$$\frac{y}{x} dx + (y^3 + \ln x) dy = 0$$
;

6.
$$\frac{3x^2 + y^2}{y^2} dx - \frac{2x^3 + 5y}{y^3} dy = 0;$$

7.

$$3x^{2}(1+\ln y)dx - \left(2y - \frac{x^{3}}{y}\right)dy = 0.$$

8. Уравнения, не разрешённые относительно производной

Пример: $y = x + y' - \ln y'$.

Решение:

Введём параметр p=y'. Тогда исходное уравнение принимает вид $y=x+p-\ln p$ (*). Беря полный дифференциал и заменяя dy на $p\,dx$, получим $p\,dx=dx+dp-\frac{dp}{p}$. Решением этого уравнения является $x=\ln p+C$. Подставим это решение в равенство (*): $y=\ln p+C+p-\ln p=p+C$. Таким образом, получаем решение в параметрическом виде: $\begin{cases} x=\ln p+C\\ y=p+C \end{cases}$. В данном случае можно исключить параметр: $y=e^{x-C}+C$.

Найти решения следующих уравнений:

1.
$$(y')^2 - 2y'x + y = 0$$
;

2.
$$x(1+y')+(y')^2=y$$
;

3.
$$yy' = 2x(y')^2 + 1$$
;

4.
$$xy' + y = \ln y'$$
;

11.
$$xyy'' - x(y')^2 = yy'$$

5.
$$\sqrt{(y')^2+1}+xy'-y=0$$
;

6.
$$\ln y' + 2(xy' - y) = 0$$
;

7.
$$y = xy' + \frac{1}{2v'}$$
;

8.
$$y = xy' - \sqrt{y'}$$

9. Уравнения, допускающие понижение порядка

Пример 1: xy'' + y' = 0.

Решение:

Положим z=y'. Тогда исходное уравнение принимает вид xz'+z=0, откуда $\frac{dz}{z}=-\frac{dx}{x}$. Интегрируя, приходим к решению $z=\frac{C_1}{x}$. Возвращаясь к первоначальной переменной, получаем уравнение $y'=\frac{C_1}{x}$, решением которого является $y=C_1\ln|x|+C_2$.

Пример 2:
$$2yy'' = y'^2 + 1$$
.

Решение:

Так как в уравнение не входит независимая переменная x, то будем считать y новой независимой переменной, а y'=p(y) функцией этой новой переменной. Тогда y''=pp' и уравнение принимает вид $2ypp'=p^2+1$. Решением этого уравнения является $p=\pm\sqrt{C_1y-1}$, из чего получаем уравнение $y'=\pm\sqrt{C_1y-1}$. Решая его, получим $4(C_1y-1)=C_1^2(x+C_2)$.

Найти решения следующих уравнений:

1.
$$y''' = \sqrt{1 + (y'')^2}$$
;
2. $xy^{(5)} - y^{(4)} = 0$;
3. $y''' = (y'')^2$;
4. $xy'' = y' \ln \frac{y'}{x}$;
5. $yy'' = (y')^2$;
6. $1 + (y')^2 = 2yy''$;
7. $yy'' = (y')^2 + y'$;
8. $yy'' = (y')^2 - (y')^3$.

10. Теоретические вопросы

- 1. Определение ОДУ.
- 2. Определение решения ОДУ, следования, эквивалентности
- 3. Определение интеграла ОДУ, полного интеграла и общего решения.
- 4. Утверждение об уравнении с разделенными переменными.
- 5. Решение ЛОУ1 методом разделения переменных.
- 6. Функция $\Phi_{t_0}(t)$ и ее свойства.
- 7. Утверждение об общем решении ЛОУ1.
- 8. Свойства решений ЛУ1.
- 9. Пример уравнения с «составными» решениями.
- 10. Частное и общее решение ЛНУ1.
- 11. Оператор сдвига по траекториям ЛУ1.
- 12. Утверждение о различных трактовках.
- 13. Определение уравнения в полных дифференциалах (УПД) и потенциальной функции (ПФ).
- 14. Утверждение об интегрировании УПД.

- 15. Признак полного дифференциала и алгоритм нахождения ПФ.
- 16. Уравнение RLCE-контура.
- 17.Второй закон Ньютона.
- 18. Механический гармонический осциллятор.
- 19. Уравнение маятника.
- 20. Математическая модель биологической системы «хищник-жертва».

Литература

- 1. Сборник задач по дифференциальным уравнениям / А.Ф. Филиппов. Ижевск: НИЦ «Регулярная и хаотическая динамика», 2000. 176с.
- 2. Дифференциальные уравнения. План лабораторных занятий: методические указания / сост. И.Ф.Леженина [и др.] Воронеж: ЛОП ИПЦ ВГУ, 2006. 8 с.

Учебное издание.

Дифференциальные уравнения. Материалы к первой аттестации Учебное пособие для вузов

Составители:

Леженина ИринаФедоровна, Петрова Любовь Петровна, Прядко Ирина Николаевна, Садовский Борис Николаевич. Редактор Бунина Т.Д.